Science Experiments Kids   Science Fair Projects
  1000 Science Fair Projects Com

Green Nanotechnology


The objective: The aim was to see if plant material could be used to produce gold nanoparticles, and, if yes, to analyze the characteristics of the nanoparticles produced. Challenge: Nanotechnology has amazingly diverse applications, from stain-resistant clothing to a potential cure for cancer. The conventional methods of producing nanoparticles utilize chemicals toxic both to the environment and the body.

It is critical that nanoparticles be produced in a safe, green way so that they are environmentally friendly and biologically benign. Proposed Solution: Plants contain naturally occurring phytochemicals that give the plant antioxidant, anticancer, and antimicrobial properties. It was hypothesized that phytochemicals in plants can be harnessed to produce gold nanoparticles, and a resistance to aggregation in plant material-synthesized gold nanoparticles is expected.


The solvent was water, and the reducing and capping agent was the plant material. Three different plants were tested: cinnamon, cumin, and turmeric.

The gold salt was HAuCl4. After production, nanoparticles were characterized with UV-Visible Absorption Spectroscopy and TEM analysis.

In vitro stabilities of nanoparticles were tested with different dilutions, the addition of 5% NaCl, 0.5% cysteine, and Phosphate Buffer-7 to raise the pH of the solution to the physiological pH.

Also, nanoparticles were produced using a conventional reducing agent, sodium citrate; the stability of these nanoparticles was tested as well. All tests were done in triplicates.


UV-Vis showed that the peak wavelength was ~540 nm for cinnamon, ~531 nm for cumin, ~556 nm for turmeric. TEM showed particles were mostly spherical and had a size distribution of 13+/-6 nm.

The peak wavelength did not change significantly through all stability tests. The nanoparticles had a robust coating and resisted aggregation.


The hypotheses were supported. Plant material can be used to produce stable and biocompatible gold nanoparticles.

Also, plant material-synthesized nanoparticles were strongly capped and resistant to aggregation, opposed to citrate-produced nanoparticles.

This method uses environmentally friendly solvents, reducing, and capping agents and produces biologically benign nanoparticles. As the nanorevolution unfolds, this green method can help solve a pollution problem at the beginning state of a developing technology.

This project investigated a novel, green chemistry approach to synthesize environmentally friendly and biologically benign gold nanoparticles using plant material, in an energy efficient and cost effective process.

Science Fair Project done By Anjini Karthik


Related Projects

Effect of Electrolysis on Solar Desalination
Green Nanotechnology
Amateur Studies in Polymer Construction
Measuring Sugar Content with an iPod Touch and 3D Glasses
Effect of Temperature on a Chemical Reaction
Activated Charcoal
The Window to a Spider


>>Next Topic <<Back to Chemistry Projects



Copyright © 2012 through 2015